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Abstract—The problem of finding the arrangement of closed-loop control system poles that
minimizes an objective function is considered. The system optimality criterion is the value of the
H∞ norm of the frequency transfer function relative to the disturbance with constraints imposed
on the system pole placement and the values of the H∞ norm of the sensitivity function and the
transfer function from measurement noise to control. An optimization problem is formulated as
follows: the vector of variables consists of the characteristic polynomial roots of the closed loop
system with the admissible values restricted to a given pole placement region; in addition to
the optimality criterion, the objective function includes penalty elements for other constraints.
It is proposed to use a logarithmic scale for the moduli of the characteristic polynomial roots
as elements of the vector of variables. The multi-extremality problem of the objective function
is solved using the multiple start procedure. A coordinate descent modification with a pair of
coordinates varied simultaneously is used for search.
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1. INTRODUCTION

Rejection of an unmeasurable disturbance is one of the main tasks of control design [1]. On the
other hand, the resulting system must satisfy robustness conditions since the plant model used for
control design is inaccurate. For linear systems, first of all, the requirements for stability margins
must be met [2]. These requirements can be specified as the minimum acceptable stability margins
radius [3] or limiting the value of the sensitivity function [4, 5]. The H∞ norm of the measurement
noise sensitivity function can serve as a measure of robustness to unmodeled dynamics [5, 6].

Many control design techniques lead to an optimization problem. For example, the methods
of H∞ optimization [7] and invariant ellipsoids [1] reduce to an optimization procedure for solving
a system of linear matrix inequalities. If the variables are the coefficients of a fixed-structure con-
troller, the optimization problem may become non-convex and multi-extremal [8, 9]. The successful
results of solving such problems allowed developing similar approaches for tuning PID controllers
widely used in practice [10, 11].

For a linear single-input single-output (SISO) system, the following idea of optimization of the
closed-loop system pole placement was proposed in [12]: the controller coefficients are found via the
standard pole placement procedure, and the roots of the desired characteristic polynomial of the
closed loop system are searched using an optimization procedure for specified quality criteria and
constraints. The standard global optimization procedure from the MATLAB Global Optimization
Toolbox [13] was used in [12]. The value of the H∞ norm of the transfer function relative to the
disturbance was chosen as a quality criterion under given constraints on the values of theH∞ norms
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of the sensitivity function and the transfer function from measurement noise to control. In addition,
constraints were imposed on the system pole placement.

This article is devoted to developing an optimization procedure for finding an optimal closed-loop
system pole placement that minimizes a given objective function subject to specified constraints;
in the corresponding optimization problem, the vector of variables consists of the characteristic
polynomial roots of the closed loop system.

2. PROBLEM STATEMENT

Consider a linear SISO system whose structure is presented in Fig. 1. Let the plant be described
by the transfer function

P (s) =
b(s)

a(s)
=

bn−1s
n−1 + · · · + b0

sn + an−1sn−1 + · · ·+ a0
, (1)

where s is the Laplace transform variable; the coefficients ai, bi ∈ R (i = 0, . . . , n − 1) have known
values, and at least one of the coefficients bi is nonzero; the polynomials a(s) and b(s) are co-
prime. The frequency response function is obtained for s = jω, where ω ∈ [0,∞). By assumption,
as frequency response functions are used, all system signals (including the unmeasured exogenous
disturbance) are integrable and satisfy the restrictions for applying the Fourier transform [2]:

+∞
∫

−∞

|f(t)|dt < ∞.

Suppose that the controller’s transfer function has the form

C(s) =
d(s)

c(s)
=

dn−1s
n−1 + · · · + d0

cn−1sn−1 + · · · + c0
, (2)

where the controller order (n−1) is determined by the order of the plant model (1). A higher-order
controller, which can be constructed, e.g., by adding an integral component to the controller, is not
considered here. A lower-order controller cannot be constructed by the pole placement technique;
see the explanation below.

According to the pole placement method [14, 15], the polynomials c(s) and d(s) of the con-
troller (2) can be obtained by solving the equation

a(s)c(s) + b(s)d(s) = δ(s), (3)

where the left-hand side is the characteristic polynomial of system (1), (2) in which a(s) and b(s)
are the known polynomials of the plant’s transfer function, and δ(s) is a given desired characteristic
polynomial. As is known [14], there exists a unique solution of this equation under the condition
deg d(s) < deg a(s) or deg c(s) < deg b(s). In addition, under the condition deg δ(s) > 2 deg a(s)− 1,

Fig. 1. Closed loop system: y—measured output, ν—measurement noise, r—reference signal, e—control error,

u—control, and f—disturbance.
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the causality of control is satisfied: deg d(s) 6 deg c(s). Then, by choosing the desired polyno-
mial δ(s) of degree deg δ(s) = 2deg a(s)− 1, we obtain the solution (2) for which the conditions
deg d(s) 6 deg c(s) and deg d(s) < deg a(s) hold. In this case, equation (3) can be solved by com-
piling a system of 2n linear algebraic equations with 2n unknowns when equating the coefficients
of the left- and right-hand sides of equation (3) at the equal powers of s:



















cn−1

. . .
c0

dn−1

. . .
d0



















= W−1







δ2n−1

. . .
δ0






, (4)

where W ∈ R
2n×2n is a matrix obtained from the coefficients ai, bi (i = 0, . . . , n − 1).

Thus, for any plant (1), one can find a controller of the form (2) ensuring any given characteristic
polynomial δ(s) of degree (2n− 1) for the closed loop system. Note that for an unstable plant of
order n, there may not exist a controller of order below (n− 1) ensuring at least the stability of the
system. Therefore, we consider a controller of order (n− 1) to ensure not only stability but also
other system properties of the system by choosing an appropriate desired characteristic polynomial.

The characteristic polynomial can be represented as

δ(s) =
nr
∏

i=1

(s+ λi)
nc
∏

k=1

(s2 + 2ζkω̆ks+ ω̆2
k), (5)

where nr = 2n − 2nc − 1 is the number of real roots of the polynomial δ(s) and nc is the number
of complex conjugate pairs of the roots; the values λi, ω̆k ∈ R and ζk ∈ [0, 1] determine the closed-
loop pole placement and the coefficients δ0, . . . , δ2n−2 in (4) while δ2n−1 = 1. Let ω̆k denote the
natural frequencies of the system since the notation ω is used for the frequency variable in transfer
functions.

In addition to the standard constraints λi > 0, ω̆k > 0, and 0 < ζk 6 1, which ensure the stability
of the closed loop system, it is possible to specify the supplementary ones

0 < λmin 6 λi 6 λmax, 0 < ω̆min 6 ω̆k 6 ω̆max, 0 < ζmin 6 ζk 6 1 (6)

to obtain the desired speed and damping rate of the system and limit the high-frequency compo-
nents.

Similar to [12], the value of H∞ norm of the frequency response function relative to the distur-
bance is taken as the system quality criterion:

‖Gyf (jω)‖∞ = sup
ω

∣

∣

∣

∣

b(jω)c(jω)

δ(jω)

∣

∣

∣

∣

. (7)

Moreover, the following constraints must be satisfied:

— for the H∞ norm of the sensitivity function, the inequality

‖S(jω)‖∞ = sup
ω

∣

∣

∣

∣

a(jω)c(jω)

δ(jω)

∣

∣

∣

∣

6 Smax (8)

to ensure the required stability margins;
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— for the H∞ norm of the frequency response function relative to the noise, the inequality

‖Guν(jω)‖∞ = sup
ω

∣

∣

∣

∣

a(jω)d(jω)

δ(jω)

∣

∣

∣

∣

6 Nmax (9)

to ensure the robustness of the system in the presence of unmodeled dynamics by limiting the
controller gain [5, 6].

Thus, the problem is to find a controller of the form (2) that minimizes the exogenous disturbance
effect on the the plant (1) in terms of the norm (7) subject to the constraints (6), (8), and (9)
under given values ai, bi (i = 0, . . . , n − 1), λmin, λmax, ω̆min, ω̆max, ζmin, Smax, and Nmax. It can be
formulated as an optimization problem.

Problem 1. Find

min
x∈Q

‖Gyf (jω, x)‖∞

subject to

‖S(jω, x)‖∞ 6 Smax,

‖Guν(jω, x)‖∞ 6 Nmax,
(10)

where Smax and Nmax are given values. The vector of variables x ∈ R
2n−1 has the form

x = [λ1, . . . , λnr
, ω̆1, . . . , ω̆nc

, ζ1, . . . , ζnc
], (11)

where nr and nc are given values such that 0 6 nc 6 n − 1, nr = 2n − 2nc − 1, and n is a known
order of the plant (1). The admissible region Q is determined by inequalities (6) with the given
parameters λmin, λmax, ω̆min, ω̆max, and ζmin. In accordance with (7)–(9), the frequency response
functions Gyf (jω, x), S(jω, x), and Guν(jω, x) are constructed from the given polynomials a(jω)
and b(jω) of the plant (1), the polynomial δ(jω) determined for the vector (11) by formula (5),
and the controller polynomials c(jω) and d(jω) whose coefficients are found by solving system (4).

Note that the constraints (6), (8), and (9) may be not satisfied simultaneously; in this case, the
set of admissible values will be empty. This issue is not considered here: the constraints are assumed
to be consistent. For a particular problem, an iterative process can be carried out in practice to
find acceptable values of the constraints for reaching an acceptable value of the objective function.

3. SEARCH FOR THE OPTIMAL ROOTS OF THE CHARACTERISTIC POLYNOMIAL

3.1. Objective Function with Penalties

We use the penalty function method to satisfy the constraints. For the value ‖G(jω, x)‖∞, the
penalty function G̃(x) is given by

G̃(x) =















0 if ‖G(jω, x)‖∞ 6 Gmax

ln
‖G(jω, x)‖∞

Gmax
if ‖G(jω, x)‖∞ > Gmax.

(12)

In this case, the objective function takes the form

f(x) = ‖Gyf (jω, x)‖∞ + µ1S̃(x) + µ2G̃uν(x), (13)

where µ1 > 0 and µ2 > 0 are weight coefficients, and S̃(x) and G̃uν(x) are the penalty functions
obtained using (12) for the constraints (10). Note that due to (12), the objective function (13) is
non-differentiable at the points where ‖S(jω, x)‖∞ = Smax or ‖Guν(jω, x)‖∞ = Nmax. Moreover,
the functions (7)–(9) may be non-convex and multi-extremal, and their gradients are not written
in explicit form.
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3.2. Scaling of the Variables

The logarithmic scale is often used to analyze dynamic systems in the frequency domain [2].
Note that the elements λi and ω̆k of the vector of variables (11) are the natural frequencies of the
system. We convert them to a logarithmic scale, thus assigning a greater weight to changes in the
roots with a modulus close to zero (slow system dynamics) compared to changes in those with a
large modulus (fast system dynamics):

x̃ = [lg λ1, . . . , lg λnr
, lg ω̆1, . . . , lg ω̆nc

, ζ1, . . . , ζnc
]

= [λ̃1, . . . , λ̃nr
, ω̃1, . . . , ω̃nc

, ζ1, . . . , ζnc
],

(14)

where λ̃i and ω̃i are the common logarithms of the variables λi and ω̆i, respectively. In this case,
the constraints (6) take the form

0 < lg λmin 6 λ̃i 6 lg λmax,

0 < lg ω̆min 6 ω̃k 6 lg ω̆max,

0 < ζmin 6 ζk 6 1.

(15)

To calculate the objective function, the values of the variables must be rescaled to (11) by raising

to the tenth power: λi = 10λ̃i , i = 1, . . . , nr, and ω̆i = 10ω̃i , i = 1, . . . , nc. The notations without
the subscripts, λ̃, ω̃, and ζ, will be used for the corresponding groups in the vector of variables (14):

λ̃ = [λ̃1, . . . , λ̃nr
],

ω̃ = [ω̃1, . . . , ω̃nc
],

ζ = [ζ1, . . . , ζnc
].

Accordingly, the vector (14) will be represented as x̃ = [λ̃, ω̃, ζ].

The dynamics with frequencies exceeding manyfold the minimum natural frequency of the control
plant are often neglected during system design. Therefore, the difference between the common
logarithms of the admissible values of the moduli of the characteristic polynomial roots usually is
not greater than 5. For example, when considering a system with slow dynamics and λmin = 0.001
and λmax = 1, we obtain lg λmin = −3 and lg λmax = 0; for a system with fast dynamics, lg λmin = 2
and lg λmax = 6 under the same or similar values for lg ω̆min and lg ω̆max. Then the choice of the
minimum step for the groups of variables λ̃ and ω̃ is obvious. It follows from practical considerations
that a step from 0.0001 to 0.01 will be quite small under such scales. This step is also reasonable
for the group ζ, whose elements belong to the range [ζmin, 1].

3.3. Multiple Start

Multiple start is a standard approach to settling the multi-extremality problem of the objective
function (13): the search procedure is executed from different initial points. For the problem under
consideration, the initial values can be chosen, e.g., using the following rule:

— Choose the number of alternatives n1, n2, and n3 for the groups of variables λ̃, ω̃, and ζ, respec-
tively.

— For the groups λ̃ and ω̃, create alternatives in which the first elements of the groups are uniformly
distributed in the admissible range and the remaining elements are uniformly distributed in the
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range [λ̃1, lg λmax] or [ω̃1, lg ω̆max], respectively:

λ̃
(ℓ)
1 = lg λmin + ℓ

lg λmax − lg λmin

n1 + 1
, ℓ = 1, . . . , n1,

λ̃
(ℓ)
i = λ̃

(ℓ)
1 + (i− 1)

lg λmax − λ̃
(ℓ)
1

nr

, i = 2, . . . , nr,

ω̃
(ℓ)
1 = lg ω̆min + ℓ

lg ω̆max − lg ω̆min

n2 + 1
, ℓ = 1, . . . , n2,

ω̃
(ℓ)
i = ω̃

(ℓ)
1 + (i− 1)

lg ω̆max − ω̃
(ℓ)
1

nc
, i = 2, . . . , nc.

(16)

— Use the same values for all elements of the group ζ :

ζ
(ℓ)
i =















1− ζmin

2
if n3 = 1

ζmin + (ℓ− 1)
1− ζmin

n3 − 1
if n3 > 1,

i = 1, . . . , nc, ℓ = 1, . . . , n3. (17)

— Create the set of n1 · n2 · n3 initial points by combining all alternatives for each group.

For example, 32 initial points will be obtained if n1 = 4, n2 = 4, and n3 = 2.

When building another grid of the initial values, one should keep in mind the following: the
rearrangement of any elements within the groups λ̃ and ω̃ makes no sense because, due to (5), the
resulting polynomial δ(s) will be the same regardless of the order of the elements in the group.

3.4. Search Method

The objective function (13) is generally non-convex, multi-extremal, and non-differentiable at
some points; therefore, standard search methods will not necessarily find a global minimum. For the
problem under consideration, we use a combined method in which coordinate descent is applied for
the group of variables ζ whereas the groups λ̃ and ω̃ are merged to execute the search procedure by
the pairs of coordinates. The dimension of the vector [λ̃, ω̃] equals na = nr+nc, and na!/(2(na−2)!)
pairs can be made from the elements of this vector. For na = 10, we have 45 pairs, which is
computationally feasible. For most practical 1D problems, this restriction will be satisfied; for
higher-dimension problems, however, some pairs should be discarded. For example, only neighbor
elements can be combined into pairs, which gives (na − 1) pairs; alternatively, pairs can be formed
separately for the groups λ̃ and ω̃.

We determine the next point (k+ 1) after varying a pair of elements i, j (i = 1, . . . , na − 1, j =
i+ 1, . . . , na) as follows:

x̃k+1 = argmin
α,β

f(x̃k + αei + βej), (18)

where ei and ej are the vectors with ones for elements i and j, respectively, and zeros for all other
elements; α and β are values from some set of variations, e.g.,

α, β ∈ {0, 0.001, − 0.001, 0.01, − 0.01}. (19)

If the result of (18) is α = β = 0, then a new point has not been obtained. If a new record
value of the objective function is reached, then the 1D search procedure can be executed for the
corresponding values α and β :

x̃k+1 = argmin
γ

f(x̃k + γαei + γβej), (20)

where, e.g., γ ∈ {0, 10}.
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Fixed steps are used due to the nonconvexity of the objective function: finding an optimal step
in a given direction may be a computationally difficult task.

When varying the elements of the groups λ̃ and ω̃, we take into account that the objective
function is independent of the rearrangement of these elements. Therefore, it is possible to fix an
order of elements λ̃1 6 λ̃2 6 . . . 6 λ̃nr

, ω̃1 6 ω̃2 6 . . . 6 ω̃nc
and, in addition to the bounds (15),

use neighbor elements as bounds as well. For example, in the case nr > 2,

λ̃1 ∈ [lg λmin, λ̃2],

λ̃i ∈ [λ̃i−1, λ̃i+1], 1 < i < nr,

λ̃nr
∈ [λ̃nr−1, lg λmax].

(21)

After the search procedure (18) for all pairs (i = 1, . . . , na − 1, j = i + 1, . . . , na), we execute
coordinate descent for the group ζ :

x̃k+1 = argmin
η

f(x̃k + ηei), i = 1, . . . , nc, (22)

where η is the set of fixed steps and ei is the vector with one for element (i + nr + nc) and zeros
for the other elements. For example, the set of steps can be

η ∈ {0.001,−0.001, 0.01,−0.01, 0.05,−0.05}. (23)

The elements of the group ζ are varied within the specified bounds: ζi ∈ [ζmin, 1].

Thus, Problem 1 is solved using the following algorithm for na > 1.

Algorithm 1.

1. Choose the penalty weight coefficients µ1 and µ2 for the objective function (13) and set the
search threshold ε.

2. Generate a grid of initial points as described in subsection 3.3 and take the first initial point.

3. Calculate the value of the objective function at the initial point, f
(ℓ)
min.

4. Take a pair of elements from the groups of variables λ̃ and ω̃.
5. Execute (18) through the exhaustive search procedure over the set (19).
6. If a new record value of the objective function is obtained, execute (20) in the obtained

direction and go to the new point.
7. Take the next pair of elements from the groups of variables λ̃ and ω̃ and revert to Step 5. If

the exhaustive search procedure for the pairs is completed, proceed to Step 8.
8. If nc > 0, take an element of the group ζ. Otherwise, proceed to Step 11.
9. Execute (22) through the exhaustive search procedure over the set (23).
10. Take the next element from the group ζ and revert to Step 9. If the exhaustive search

procedure within the group ζ is completed, proceed to Step 11.

11. If the record value of the objective function f̂ yielded by Steps 4–10 is less than f
(ℓ)
min − ε,

replace the value f
(ℓ)
min with f̂ and revert to Step 4 with the corresponding new point. Otherwise,

remember the objective function value min (f
(ℓ)
min, f̂) and the corresponding point x̃, take the next

initial point, and revert to Step 3. If the search procedure for all initial points obtained in Step 2
is completed, proceed to Step 12.

12. Find the minimum among the objective function values obtained for all initial points and
the corresponding point x̃. Complete the search procedure.

Additional search stages can be embedded in this algorithm if the objective function value does
not decrease in Step 11: 1) increase the weight coefficients µ1 and µ2 and continue the search
procedure from the resulting point; 2) continue the search procedure with smaller values of the set
of variations (19) for α and β.
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4. EXAMPLES

4.1. Underwater Vehicle Position Control

The transfer functions for local coordinate system positioning were identified in [16]. In this
section, we consider control design for the coordinate z with the identified transfer function

Pz(s) =
0.018

s(0.98s + 1)
. (24)

The two-degree-of-freedom (2DOF) PID controller presented in [16] allows setting a desired
transfer function of the closed loop system. For this example, we take the desired transfer function

Pm(s) =
1

(0.98s + 1)(0.5s + 1)
. (25)

The denominator of the transfer function (25) must be included in the desired characteristic
polynomial of the closed loop system when designing a 2DOF controller. Then there are only
two roots left for variation. Assume that they form a complex conjugate pair of roots of the
characteristic polynomial. In this case, the controller coefficients

C(s) =
d2s

2 + d1s+ d0
s(c1s+ c0)

(26)

are obtained from the equation

s2(0.98s + 1)(c1s+ c0) + 0.018(d2s
2 + d1s+ d0) = (0.98s + 1)(0.5s + 1)(s2 + 2ζω̆ + ω̆2).

This example illustrates the search procedure for the variables ζ and ω̆. Since na = 1 here, we
use coordinate descent instead of Algorithm 1.

Let the following bounds be specified:

ω̆min = 0.6, ω̆max = 20, ζmin = 0.8, Smax = 1.7, Nmax = 150. (27)

Weight coefficients should be assigned for the penalty functions of the objective function (13).
These coefficients are chosen so that the constraints have priority over disturbance rejection. Note
that the penalty functions are included in (13) as the ratio of the H∞ norm to its admissible

Fig. 2. Coordinate descent: x̃ = [ω̃, ζ].
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maximum value whereas theH∞ norm of the frequency response function relative to the disturbance
is used in absolute units. Therefore, to choose the weight coefficients, it is necessary to estimate
the value ‖Gyf (jω)‖∞. For example, for the minimum values from the admissible region ω̆ = 0.6,
ζ = 0.8, we obtain ‖Gyf (jω)‖∞ = 0.0239. Then the values µ1 = 1 and µ2 = 0.1 can be taken. The
set of steps (23) is used for both variables.

Figure 2 shows the surface of the objective function on a grid with steps of 0.02 for ω̃ and 0.01
for ζ within the given constraints. Also, this figure presents the objective function values in each
step of the coordinate descent procedure with the initial point

x̃0 =

[

lg ω̆max + lg ω̆min

2
,
1 + ζmin

2

]

= [0.5396, 0.9].

The minimum point is ω̆ = 0.6928, ζ = 0.821, and the corresponding values are

‖S(jω)‖∞ = 1.27, ‖Guν(jω)‖∞ = 149.97, ‖Gyf (jω)‖∞ = 0.0206.

4.2. Controller for a Two-Mass System

Consider the benchmark problem presented in [17], i.e., a robust control design for two trolleys
joined by a spring. For this problem, the pole placement optimization method was used to build
a controller satisfying the speed and robustness requirements of the system [12]. Note that the
standard global optimization procedure from the MATLAB Global Optimization Toolbox [13] was
applied therein to find the optimal roots of the characteristic polynomial. In this subsection, we
use Algorithm 1 to solve the same problem.

Let the transfer function relative to control be

P (s) =
1

s2(s2 + 2)
. (28)

In this plant, control and disturbance are applied at different points, and the open-loop transfer
function relative to the disturbance is known:

Pf (s) =
s2 + 1

s2(s2 + 2)
. (29)

In this case, the H∞ norm of the closed-loop frequency transfer function relative to the disturbance
differs from (7) and is calculated as

‖Gyf (jω)‖∞ = sup
ω

∣

∣

∣

∣

bf (jω)c(jω)

δ(jω)

∣

∣

∣

∣

, (30)

where bf (jω) is the numerator polynomial of the transfer function (29).

Similar to [12], we design a controller of the form (2) with n = 4 under the following bounds
and constraints:

λmin = ω̆min = 0.1, λmax = ω̆max = 100, ζmin = 0.7, Smax = 1.665, Nmax = 100. (31)

We choose the desired structure of the characteristic polynomial (5) with nr = 1 and nc = 3
and the weight coefficients µ1 = µ2 = 100 for the penalty functions in (13). Let the threshold for
varying the objective function be ε = 10−6. We form twenty-four initial points for multiple start by
choosing n1 = 4, n2 = 3, and n3 = 2 and using (16) for the groups λ̃ and ω̃ as well as the following
alternatives for the group ζ : 1) all elements equal ζmin; 2) all elements equal one.
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Fig. 3. The values of the objective function f(x) at each iteration of the search algorithm.

Fig. 4. The values of the objective function f(λ̃1, ω̃1).

The resulting minimum point of the objective function (13) is

xmin = [0.3417, 1.4138, 1.4145, 3.6593, 0.701, 0.700, 0.700], (32)

for which

‖S(jω)‖∞ = 1.665, ‖Guν(jω)‖∞ = 99.96, ‖Gyf (jω)‖∞ = 5.296. (33)

The minimum was found in twenty iterations from an initial point. Figure 3 shows the graph of the
record values of the objective function. Other six points of multiple start yielded ‖Gyf (jω)‖∞ < 6
under the valid constraints. The remaining initial points led to local minima with the invalid
constraint ‖S(jω)‖∞ 6 Smax or a higher value of ‖Gyf (jω)‖∞. Only two of the twenty-four initial
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points of multiple start resulted in the same local minimum; in the rest cases, the search procedure
was completed at different points.

Figure 4 shows the surface of the objective function calculated for the vector x̃ with only the first
two elements being varied on a grid (and the rest equaling the obtained values (32)) and search
alternatives for these two elements from the initial points [0.5, 0.5] and [−1, 0.5]. Obviously, the
search procedure converged to different local minima with values of the objective function equal to
19.8 and 5.3, respectively. In other words, the objective function in this example has a complicated
ravine surface even in the simplified case with two variables.

The same example with the same constraints was solved by several methods in [12]. The con-
troller with ‖Gyf (jω)‖∞ = 5.301, the result almost coinciding with (33), was obtained using systune,
the fixed-structure control system tuning procedure [18] of the MATLAB Robust Control Toolbox.
The solution by the pole placement optimization method using the standard global optimization
procedure was implemented in [12]; the resulting controller rejects the disturbance slightly worse,
ensuring the value ‖Gyf (jω)‖∞ = 6.64.

Thus, the search algorithm proposed in this article found a better solution than the standard
global optimization procedure. The solution obtained by systune is practically not improved, which
suggests its global minimum character.

5. CONCLUSIONS

The control design problem using the pole placement method has been considered, and an
algorithm has been developed to find the desired poles based on the specified system quality criteria
and constraints. The value of the H∞ norm of the frequency transfer function relative to the
disturbance has been selected as the quality criterion of the system, and the maximum admissible
values of the H∞ norms of the sensitivity function and the frequency transfer function relative
to the measurement noise have been set as the constraints. The resulting search algorithm can
be used for other criteria and constraints. In this case, only the penalty components (12) in the
objective function (13) will be changed. Note that in the example of subsection 4.1, the controller
structure differs from (2) since an integral component has been added to the controller. Thus, the
scope of application of the developed approach is not restricted to systems with the controller (2):
it covers all controller structures that can be obtained by the pole placement method. Also, for the
sake of simplicity, an exogenous disturbance has been applied along with the control action in the
system structure. Indeed, the real transfer function relative to the disturbance is often unknown;
in this case, such a simplification of the system structure still allows considering the effect of the
disturbance in the system. If the plant’s transfer function relative to the disturbance is known (see
the example of subsection 4.2), it should be used when forming the transfer function of the closed
loop system relative to the disturbance.

The advantages of the proposed search method are due to considering the properties of the
characteristic polynomial roots. The logarithmic scale taken for the moduli of the characteristic
polynomial roots provides the following benefits. First, it serves to reasonably choose the increment
of the variables in the search procedure. Second, it allows one to form a limited set of initial points
for the multiple start procedure. The search algorithm with a pair of simultaneously varied elements
finds the minimum for an objective function with a complicated surface. Thus, the known features
of the vector of variables in the problem under consideration have been utilized to develop an
effective constrained minimization algorithm for a non-convex multi-extremal objective function.
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